Telescope systems modelling by SE^2

INCOSE German Chapter GfSE

Overview

- Introduction
- Problem statement
 - Object of case study
 - Why using SysML
 - Goals
- Technical approach
- Expected deliverables
- Collaboration approach
- Intermediate results (problems)

Introduction

- The SE^2 team is a collaboration between the European Southern Observatory (ESO) and the SysML working group of the German Chapter of INCOSE.
- ESO provides access to one of its high-tech projects funded by the European Union.

Problem statement - Object of case study

Active Phasing Experiment (APE)

- Validate wave front control concepts
- Four different types of sensors to be compared
- Optical, mechanical, electronic, software components and interfaces
- Multi-national/multi-institute collaboration with industrial contracts
- Deployment in the lab and on sky
- Installation/Integration on existing telescope in the Atacama desert (optical, mechanical and control system integration)
- Status: integrated in the lab, close to completion

E-ELT mechanical structure

Segmented primary mirror

Segmented Telescope Wavefront Control

Separation of the components according to temporal and spatial spectra

Control strategy: which unit responsible for which component

Phasing sensor baseline: atmospheric distortions are external noise

APE 3D View

Jan. 25th 2008

APE Block Diagram

Very Large Telescope

APE on the Nasmyth platform

Design of APE sub-components

INCOSE MBSE Workshop #2 Albuquerque

12

Phasing Wave front Sensors

INCOSE MBSE Workshop #2
Albuquerque

Control loop

The control of the ASM has a cascade structure with two loops.

Internal Metrology

B

OMB

APE in the lab

Jan. 25th 2008

Problem statement - Why using SysML?

- Large number of functional, performance, physical and interface requirements
- All kinds of optical, mechanical, electronic and software interfaces
- Highly demanding optical layout
- Significant amounts of data
- Different functional aspects active depending on the deployment mode

Problem statement - Goals I

The SE^2 manifesto

Provide the systems engineer the means to state the system problems comprehensively, to ensure that all requirements for a system are satisfied throughout the life cycle of the system and to develop a model on the basis of which a real system can be built, developed or deployed (i.e. design a system) (W. Wymore, Model-Based Systems Engineering 1993)

Problem statement - Goals II

The concrete SE^2 goals are:

- Provide examples of SysML, common modelling problems and approaches.
- Build a comprehensive model which serves as the basis for providing different views to different engineering aspects and subsequent activities.
- Demonstrate that SysML is an effective means to define common concepts.
- Demonstrate that a SysML model enhances traceability.

Technical Approach Basics

- The approach to the problem is primarily top-down.
- The approach is a rough guideline and not a solid plan.
- It's NOT a waterfall approach. It's an iterative approach.
- The model shall include at least two abstraction levels.

Jan. 25th 2008

Technical Approach Steps I

- Describe the objectives of the system and the modelling
- Determine the requirements
- Describe the context of the system, i.e. it's actors
- Find the services of the systems, i.e. the use cases
- Model the use case control and object flows with all important variants and exceptions

Technical Approach Steps II

- Define the domain values and blocks
- Derive a system design
- Describe system blocks behaviour
- Describe parametric model

Expected deliverables I

- Modelling FAQ
 - Guidelines for the use of modelling elements (e.g. use of ports and flows)
 - Allocation strategies
 - Guidelines for the definition of system hierarchies
- Heuristics for using the requirements relationships
- Naming conventions
- Scalable model structure and organisation
- Analysis model

Expected deliverables - Example

Туре	Electrical	Mechanical	Hydraulic	Optical	Human-Machine	Data	Thermal
Interaction medium	< <connector>> Item Flow=Current</connector>	< <connector>> Item Flow=Force</connector>	< <connector>> Item Flow =Fluid</connector>	< <connector>> tem Flow=Photons</connector>	<connector>> Item Flow=Information (e.g. audio, visual, finger print, iris), mechanical force</connector>	< <connector>> Item Flow=n/a</connector>	< <connector>> Item Flow=Heat</connector>
Connector	< <flow spec="">>, e.g. RS232, USB, CAN, Ethernet, <<block>>, e.g. cable</block></flow>	< <block>>, e.g. Joint coupling, flange, pipe</block>	< <block>>, e.g. Valve</block>	< <flow spec="">>, e.g. air, Fiber optic connectors</flow>	< <block>>, e.g. Display</block>	< <flow spec="">>, e.g data I/O items</flow>	< <block>>, e.g. metallic foil bundle</block>
Isolator	< <block>>, e.g. RF shield insulator</block>	< <block>>, e.g. Shock mount bearing</block>	< <block>>, e.g. Seal</block>	< <block>>, e.g. Shutter</block>	< <block>>,e.g. cover window</block>	n/a	< <block>>, e.g. air</block>
Converter	< <block>>, e.g. Antenna A/D converter</block>	< <block>>, e.g. Gear Train Piston</block>	< <block>>, e.g. Reducing valve Pump</block>	< <block>>, e.g. Lens group</block>	< <block>>, e.g. Keyboard, lever, loudspeaker, steering wheel, touch screen</block>	< <block>>, e.g. FPGA</block>	< <block>>, e.g.Peltier</block>

Collaboration approach

Constraints

- Participants are from different organisations
- Geographically widely distributed, very limited time available
- Different technological background, different interests

Approach

- Set-up common online collaboration area, common repository
- Define common goals and objectives
- Small task force for the "constitution"
- Define available resources, schedule, tasks, results and priorities
- Define rather independent standalone tasks
- Organise regular workshops and telecons
- Establish online connection with a messenger service

Intermediate results (problems)

- Context diagrams
- Model Structure

Their content is neither complete nor necessarily correct!

Context diagrams I

- Observatory context
- Model environmental properties

Context diagrams II

 APE Control System logical context

Context diagrams III

- APE Mechanical Context
- Modelling of hierarchies and interfaces

Context diagrams IV

- APE Electrical context
- Modelling of hierarchies and interfaces

Flow Specifications I

- Flow Specification BDD
- Model of a real VLT
 Service connection point
 providing coolant,
 compressed air, Lan,
 electrical and safety
 connections
- Modelling consistent views of the various parts
- Relationship to "real" schematics

Flow Specifications II

Parametrics model

Open Issue: Can parametrics contain dynamic aspects?

Model structure

 Possible model structure covering context and internal information with different abstraction layers

Conclusions

• Project:

- APE seems well suited for a case study showing
 SysML application and benefits
- Anticipated problems
 - Model consistently different views
 - Find a common modeling philosophy for team members from different domains (even worse for distributed modeling)
 - Find all necessary information in the project documentation

INCOSE International Symposium in the Netherlands in June 15-19 2007 Challenge Team Results

- Solution and supporting models
- MBSE practices used
- Configuration management approach
- Tools and environment
- Degree of execution
- Model interchange capabilities
- MBSE metrics
 - Resource requirements (effort, time, ..)
 - MBSE value (productivity, quality, ...)
- MBSE findings, issues, and recommendations
 - Validation of enablers and inhibitors from MBSE strategy (refer to Jack Ring Strategy under the MBSE IW08 / MBSE Roadmap Planning)
- Training material
- Plan forward