

Telescope systems modelling

June, 15th 2008
Robert Karban
representing the SE^2 team

About SE^2

- Collaboration between the European Southern Observatory (ESO) and German Chapter of INCOSE (GfSE)
- Access to a high-tech project, the Active Phasing Experiment (APE).
- The team members are:
 - Robert Karban (ESO)
 - Andreas Peukert (TU Munich)
 - Tim Weilkiens (oose)
 - Rudolf Hauber (HOOD)

Phasing of ELTs

Edge Sensors

Detect nanometers of phasing error in micrometers of turbulence with Phasing Wave Front Sensors (~20 nm RMS)

Phasing of ELTs and APE

Very Large Telescope

APE will be installed at the telescope in the Chile desert.

The APE project

System Overview

SE^2 goals

- Provide examples of SysML, common modelling problems and approaches:
 - → Build a comprehensive model of the system APE and additional supporting models as elaborate example for all three aspects
- Provide guidelines for modelling a system with SysML resulting from experiences during project
 - → Establish a modelling FAQ to support consistent modelling results (for this and future projects)
- Demonstrate that SysML is an effective means to define common concepts
- Demonstrate that a SysML model enhances traceability

What have we been able to achieve?

Deliverables: Modelling FAQ

- (Exemplary) content of modelling FAQ:
 - Identification of necessary system models, aspects and views
 - Guidelines for the use of modelling elements (e.g. use of ports and flows)
 - Guidelines for interface modelling
 - Allocation strategies
 - Guidelines for modeling the system structure
 - Guidelines for the definition of system hierarchies
 - Heuristics for using requirements relationships (e.g. derive, refine)
 - Naming conventions for modelling elements (e.g. diagram names, block names)
 - Style and layout issues

Deliverables: System model

- Three major model parts:
 - Actual system model: APE (with all mentioned system aspects)
 - Catalogue model: standard parts, library of block prototypes
 - Modelling profile: additional stereotypes
- Main characteristics:
 - Scalable model structure and organisation
 - Includes model annotations, external references
 - Various examples of ports and flows to model interfaces
- Abstraction levels
 - Functional, Structural, Deployment
- Preliminary results are available at <u>mbse.sysmod.de</u>

Solution: System model

Example for system context

System model: High Level Structure

Example for system structure: "Product tree" of Opto-Mechanical Bench

System model: Detailed Structure

Example for refined system structure:

"Optical view of APE"

System model: Behavior

Example for system behavior: "Activity"

Catalogue model: Abstract types

Example for catalogue:

Catalogue model: Concrete types

Example for catalogue: Power Supply Interfaces

Catalogue model: Type usage

Example for catalogue: CPU types and different flow port assignments

Catalogue model: Assembling the pieces

Example for a complex catalogue part, a TCCD

Solution: Traceability

Example for automatic dependency matrix between objective and user requirements:

Solution: Modelling profile

Example for SE^2 profile:

SysML challenges

- Combining different aspects with Nested ports
- Variant modeling
- Property specific types
- Different types of interfaces like mechanical, electrical, logical, interface based on a standard document
- Reuse of association blocks
- Defining QoS
- Multi-layer abstraction (like ISO OSI model)
- Mapping activities to blocks

Challenge: Nested Ports

Challenge: Variant modeling

Challenge: Property specific types

Challenge: Interfaces specified by ICDs

ICD specifies the APE-Telescope interface

Challenge: Re-use of association blocks

Challenge: Re-use of blocks

Challenge: QoS and Allocation

Challenge: Multi-layer allocation

Example for variations on allocation

Challenge: The Tool

- Formal implementation of standards
- Navigation through the model
- Printer size friendly diagrams
- Tables and matrices as input and output medium
- Support
- Documentation, Examples
- Performance

Configuration management approach

- SVN repository for native model files
- Partial packaging of (system) model segments into separate modules (=files)
 - Only partially successful, some arising consistency problems
- Trial of Teamwork Server
 - → Inflexible integration with SVN
 - → Not tested enough yet to give conclusion
- → Very tool dependent

Find out who changes what, where and when?

Tools and environment

- MagicDraw 15.1, SysML plugin 15.1
- Subversion, MD Team work server
- Windows PC
- Wiki for team communication
- E-Mail, phone and face to face meetings
- Limited time resources of all team members

Any other business

- MBSE practices used
 - 6 system views [Maier, Rechtin]
- Degree of execution
 - No such modeling tool capability
 - No need for risk reduction
- Model interchange capabilities
 - Not tried
- Training material
 - Navigable online model
 - List of Frequently Asked Questions

MBSE metrics

- Resource usage (1.12.2007 9.6.2008)
 - four persons
 - about 60h administration
 - about 150h modeling
- Model
 - about 13000 model elements
 - about 700 symbols
 - about 150 diagrams

MBSE findings, issues, and recommendations

- Modeling mentor
- Modeling recipes
- Modeling task force
- Guidelines for modeling templates
- Guidelines for application of the tool
- Layout standards
- Model only as much as needed to understand the system

Plan forward

- Elaborate linking among different aspects
- Add more and more details in depth (system, subsystem, assembly, ...)
- Logical vs. Physical hierarchies
- Multi-layer allocations, QoS, Reuse
- Transition SysML -> UML for software intensive systems

Acknowledgements

- Sandy Friedenthal
- Dr. Darren Kelly