
www.HOOD-Group.com© HOOD Group 2007

From Use Cases to Test
Cases

Step-by-step approach to ensure the
quality of specifications and to derive

test cases based on a use case model

© HOOD Group 2007 www.HOOD-Group.com

Page 2

Speaker

• HOOD Group
– Experts in Requirements
– Keltenring 7, D-82041 Oberhaching
– http://www.HOOD-Group.com
– 45 employees
– Customer industries: Automotive, Health, Defense,..

• Dr. Rudolf Hauber
– UML/SysML and technology consultant
– Rudolf.Hauber@HOOD-Group.com

© HOOD Group 2007 www.HOOD-Group.com

Page 3

From Use Cases to test cases

Content

– Why so much testing problems

– Use Case concept

– Simulation aims and levels

– Simulation techniques for use cases

– Testing use cases

© HOOD Group 2007 www.HOOD-Group.com

Page 4

How to get test requirements?

• The problem: QA is addressed to late

System
requirements
specification

SW component
tests

System
Architecture
specification

SW
requirements
specification

SW design
specification

Implementation

User acceptance
tests

System integration
tests

SW integration
tests

Much later
Specs not updated

No one to ask

© HOOD Group 2007 www.HOOD-Group.com

Page 5

Getting test requirements

• How it should be
– Ensure quality of spec
– Define test spec when defining spec

System
requirements
specification

SW component
tests

System
Architecture
specification

SW
requirements
specification

SW design
specification

Implementation

User acceptance
tests

System integration
tests

SW integration
tests

timetime

Quelle: Rational Software
Online RUP 5.5

© HOOD Group 2007 www.HOOD-Group.com

Page 6

How to get test requirements?

• The means we can use
– Provide information
– Consider all stakeholders
– Do it in time

System
requirements
specification

SW component
tests

System
Architecture
specification

SW
requirements
specification

SW design
specification

Implementation

User acceptance
tests

System integration
tests

SW integration
tests

information

© HOOD Group 2007 www.HOOD-Group.com

Page 7

From Use Cases to test cases

Content

– Why so much testing problems

– Use Case concept

– Simulation aims and levels

– Simulation techniques for use cases

– Testing use cases

© HOOD Group 2007 www.HOOD-Group.com

Page 8

Quality of spec

Use Cases are a very good tool to derive requirements at all stage!

The user wants
The user wants

The user wants
business use case

system use case

subsystem use case

SW use case

User
Requirements

System
Requirements

Subsystem
Requirements

SW
Requirements

The system will
The system will

The system will

The subsystem
The subsystem

The subsystem

The SW will
The SW will

The SW will

© HOOD Group 2007 www.HOOD-Group.com

Page 9

Deriving test cases

Use Cases are a very good base for verification and validation

User
Acceptance

Test

System
Test

Integration
Test

SW
Test

User
Requirements

System
Requirements

Subsystem
Requirements

SW
Requirements <<test case>>

<<verify>>

<<test case>>

<<verify>>
<<test case>>

<<verify>> <<test case>>

<<verify>>

© HOOD Group 2007 www.HOOD-Group.com

Page 10

• Use Case Diagram

– Define scope and context

– Requirements overview

– Communications instrument to stakeholders

• Use Case description

– From user perspective

– Detailed flow of interaction

– pre-/post-condition, constraints

– „contract" between user and developer

• Additional information (if needed)

Use Case Modelling Elements

Systemname

© HOOD Group 2007 www.HOOD-Group.com

Page 11

Use Case description

• Use Case description is Use
Case Spec

• Same rule as for Requirement
specification

– Clear

– Precise, unambiguous

– Defined terms (glossary)

– verifiable

• Template-based
– semi-formal

– uniform

© HOOD Group 2007 www.HOOD-Group.com

Page 12

Use Case modelling

¾ For use case simulation you need modelling
¾ Modelling alternatives:

¾ Black-Box
¾ Individual flows using sequence diagrams
¾ Complete use case behaviour using

state machines or activities

¾ White-Box
¾ Use Case Realization using sequence diagrams

Precondition: present

SNMP Agent performs IBIT

check IBIT result

save IBIT result

displays IBIT result

Postcondition: present

SNMP Agent connected?

Retrieve last SNMP Agent IBIT

yes

Maintainer commands IBIT

yes
no

: Bediener :
Nav

1

: Nwob

Starten_Ard()

Aktivieren_Nog()
Heben_Klappe()

Deckel_Heben()

Deckel_Heben_Return()

Locate
Fault

Locate
Fault

Maintainer

SNMP Agent

Alternative
pathsBasis path

: Bediener :
Nav

1

: Nwob

Starten_Ard()

Aktivieren_Nog()
Heben_Klappe()

Deckel_Heben()

Deckel_Heben_Return()

: Bediener :
Nav

1

: Nwob

Starten_Ard()

Aktivieren_Nog()
Heben_Klappe()

Deckel_Heben()

Deckel_Heben_Return()

FaultManagementSystem

© HOOD Group 2007 www.HOOD-Group.com

Page 13

From Use Cases to test cases

Content

– Why so much testing problems

– Use Case concept

– Simulation aims and levels

– Simulation techniques for use cases

– Testing use cases

© HOOD Group 2007 www.HOOD-Group.com

Page 14

Simulation aims

– Aims: requirements simulation for
• Completeness of requirements

– Forgotten alternatives, missing preconditions, missing use case

• Consistency of requirements
– Ambiguous alternatives and preconditions, conflicting use cases

– Simulation is model based
• Failures in description model transition can not be recognized!

• Modelling must be coached and reviewed

© HOOD Group 2007 www.HOOD-Group.com

Page 15

Simulation levels

• Simulation of functional requirements/flows on multiple levels
– Black-Box Simulation of each use cases

– Simulation of use case dependencies

– White-Box simulation of each use case realisation

• Performance simulation
• For large systems: simulation of refinements for each stage

recursively

<<block>>
:System

<<block>>
:SubsystemA

<<block>>
:SubsystemB

<<block>>
:SubsystemB

<<block>>
:SubsystemA1

<<block>>
:SubsystemA2

© HOOD Group 2007 www.HOOD-Group.com

Page 16

From Use Cases to test cases

Content

– Why so much testing problems

– Use Case concept

– Simulation aims and levels

– Simulation techniques for use cases
• Black-Box Simulation

• Simulation of use case dependencies

• White-Box simulation

– Testing use cases

© HOOD Group 2007 www.HOOD-Group.com

Page 17

Use Cases Black-Box Simulation

• Aims:
– Is the use case task correctly understood?
– Are the use case correct?
– Is the use case description consistent with existing interfaces?

• based an cse Case state machines or activities
• Simulation of concrete scenarios by injecting external event

chains (e.g. from ICD)

Locate
Fault

Maintainer

Precondition: present

SNMP Agent performs IBIT

check IBIT result

save IBIT result

displays IBIT result

Postcondition: present

SNMP Agent connected?

Retrieve last SNMP Agent IBIT

yes

Maintainer commands IBIT

yes

no

SNMP Agent

© HOOD Group 2007 www.HOOD-Group.com

Page 18

Use Cases Black-Box Simulation

• Precondition
– Based on UML 2 Tool (z.B. Rose RT)
– Use Case modeled as UML 2 Structured Classes/SysML blocks
– Use Case modeled als State Machine/activities
– Actors modeled as UML 2 Structured Classes/SysML blocks, too

Locate Fault
Maintainer

<<block>>
Maintainer

<<block>>
LocatFault

© HOOD Group 2007 www.HOOD-Group.com

Page 19

Use Cases Black-Box Simulation

• Tool based verification
– Check use case’s state machine

• dead ends?
• clear decisions?
• missing paths?

– Check against ICD Communication
• When to send and receive messages?
• Which messages?
• Conform the use case flows to the

actor’s interfaces?

??

Precondition: present

SNMP Agent performs IBIT

check IBIT result

save IBIT result

displays IBIT result

Postcondition: present

SNMP Agent connected?

Retrieve last SNMP Agent IBIT

yes

Maintainer commands IBIT

yes

no

: Locate
Fault: Maintainer

1: evCommandIBIT ()

2.1: evDisplayIBITResult

: SNMP
Agent

1.1: evRequestIBIT

2: evIBITResult

© HOOD Group 2007 www.HOOD-Group.com

Page 20

Use Cases Black-Box Simulation

• Modeling details
– Define a (service) port for each actor (actor interface)
– Define ports for the use case simulation capsule
– Define a simulation port for the actor capsule

:Maintainer

simulation_p

:Locate Fault

agent_p
maintainer_p

:SNMPAgent

service_p

<<interface>>
IMaintainerSimulation

<<interface>>
LocateFaultService

<<interface>>
IAgentService

<<interface>>
IAgentReport

© HOOD Group 2007 www.HOOD-Group.com

Page 21

:Locate
Fault:Maintainer

1: evCommandIBIT ()

2.1: evDisplayIBITResult

:SNMP
Agent

1.1: evRequestIBIT

2: evIBITResult

Use Cases Black-Box Simulation

Event Approach
– Define signals for each incoming/outgoing ICD messages
– Define trigger events for event triggered transition

IAgentService
<<interface>>

evCommandIBIT (int)

saveIBITresult

(mei_p)::(evIBITResult)

waitForIBITresult

(mei_p)::(evIBITResult)

© HOOD Group 2007 www.HOOD-Group.com

Page 22

:Locate
Fault

:Maintainer

1: evCommandIBIT ()

2.1: evDisplayIBITResult

:SNMP
Agent

1.1: evRequestIBIT

2: evIBITResult

Precondition: present

SNMP Agent performs IBIT

check IBIT result

save IBIT result

displays IBIT result

Postcondition: present

SNMP Agent connected?

Retrieve last SNMP Agent IBIT

yes

Maintainer commands IBIT

yes
no

:Locate
Fault

:Maintainer

1: evCommandIBIT ()

2.1: evDisplayIBITResult

:SNMP
Agent

1.1: evRequestIBIT

2: evIBITResult

Use Cases Black-Box Simulation

• Tool based verification
– Use Case State machine or activity is generated
– Actors are stubed
– Automated verification of recoreded sequences against spec

sequence diagrams
– Needs a run time engine/action language

Use case
State machine

Spec
Sequence Diagram

Recorded
Sequence Diagram

© HOOD Group 2007 www.HOOD-Group.com

Page 23

Simulation of use case dependencies

Based on state machine / activity model of use case dependencies

STARTUP
entry/startup system

IDLE
New_User / Maintain users

MAINTENANCE
Kdo_B1 / download SW

do / test spare parts

OPERATE
On_A1 / Use Case A_1
On_A2 / Use Case A_2

TRAINING
do / develop train scenario

Power_On

[no failure]

/Set Maintenance

/Set Operate
/Set Training

Shutdown /
Shutdown system

Shutdown /
Shutdown system

/Set Idle
/Set Training

POWER_OFF

/Set Idle

Use Cases

Stimuli

© HOOD Group 2007 www.HOOD-Group.com

Page 24

Simulation of use case dependencies

– Aims:
• Is the problem space correctly understood?
• Are use cases missing, exists inconsistent/ doublicated functionality?
• Are the use cases consistent with system states & modes?
• Fitting the use cases together?

– Simulation by concrete „Usage Profiles“ by injecting use case stimuli-
chains

– Technique:
• Same as before, but 1 structured Class/<<block>> for all use cases/the system

:Maintainer
simulation_p

:UseCase
Dependencies

agent_p
maintainer_p

:SNMPAgent
service_p

© HOOD Group 2007 www.HOOD-Group.com

Page 25

STARTUP
entry/startup system

IDLE
New_User / Maintain users

MAINTENANCE
Kdo_B1 / download SW

do / test spare parts

OPERATE
On_A1 / Use Case A_1
On_A2 / Use Case A_2

TRAINING
do / develop train scenario

Power_On

[no failure]

/Set Maintenance

/Set Operate
/Set Training

Shutdown /
Shutdown system

Shutdown /
Shutdown system

/Set Idle

/Set Training

POWER_OFF

/Set Idle

Simulation of use case dependencies

„Walk-through" the usage profiles
– (typically) manually
– test pre- and postconditions of the use cases

Precondition: Power_On

System hochfahren

Set Operate

Set Training

Szenario erstellen

Postcondition: Idle

Set Idle

Training

Szenario trainieren

© HOOD Group 2007 www.HOOD-Group.com

Page 26

Use Case White-Box Simulation

• Aim:
– Is the use case appropriate realized?
– Are all use case steps realized?
– Are all subsystems appropriate designed?

(coherence and encapsulation)
– Make the subsystem responsibilities sense?
– Are the communication paths clearly laid out ?

• Simulation of the use case realizations
• Preconditions:

– Architectural elements identified
– Robustness Analysis performed

© HOOD Group 2007 www.HOOD-Group.com

Page 27

Use Case White-Box Simulation

• Simulation of Use Case Realisation against sequence diagrams
• Replace Use Case (Black-Box Simulation) block with

Realisation

ICD Realisation

:Locate
Fault:Maintainer

1: evCommandIBIT ()

2.1: evDisplayIBITResult

:SNMP
Agent

1.1: evRequestIBIT

2: evIBITResult

:User
Interface:Maintainer

1: evCommandIBIT ()

2.1.1: evDisplayIBITResult

:SNMP
Agent

1.1.1: evRequestIBIT

2: evIBITResult

Architektur

<<block>>

:SNMPAgent<<block>>

:UserInterface

<<block>>

:DeviceController

<<block>>

:Maintainer

:Device
Controller

1.1: evCommandIBIT ()

2.1: evDisplayIBITResult

© HOOD Group 2007 www.HOOD-Group.com

Page 28

From Use Cases to test cases

Content

– Why so much testing problems

– Use Case concept

– Simulation aims and levels

– Simulation techniques for use cases

– Testing use cases

© HOOD Group 2007 www.HOOD-Group.com

Page 29

<<use-case realization>>
Locate Fault

Testing use cases

Concept
– Use cases consists of use case scenarios, which are much like

„test scripts”
– Use case paths are modeled as sequence diagrams

 / alertS erviceS erver
 : CS _ S er ver _Managers

 / alertS erviceClient
 : CS _ClientApplication

 / alertHMIR 1
 : CS _H MI

 / bMC4IApplication
 : BMC4IApplication

createAlertBTcreateAlertBT
addAlertT imeS tampaddAlertT imeS tamp

for wardAlertfor wardAlert

handleAlerthandleAlert

createAlertObjectcreateAlertObject

logAlertS tatus ChangelogAlertS tatus Change

notifyAlertnotifyAlert

publ is hAlertpubl is hAlert

dis playAlertdis playAlert

createAcous ticAlertcreateAcous ticAlert

S hall we do it?

for all regis tered
HMIs

 / alertHMIR2
 : CS _H MI

 / alertHMIR 1
 : CS _H MI

 / alertS erv iceS erver
 : CS _ S erver_ Managers

 / u serR 1
 : U ser

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleStatechangeAlertL ifecycleState

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

logAlertS tatusChangelogAlertS tatusChange

publ ishLogS tatusChangepubl ishLogS tatusChange

publis hAlertpublis hAlert
publishAlertpublishAlert for all registered

HMIs

Basic scenario alternative scenario

Locate Fault

Repair Fault

SNMP AgentMaintainer

FaultManagementSystem

© HOOD Group 2007 www.HOOD-Group.com

Page 30

Testing use cases

Deriving the test specification: Stage 1 Initial test cases
– Define a test case for each sequence diagram of each use case

• Basic path
• Alternative paths
• Extended paths

<<Test case>>
UseCaseA_basic

<<Test case>>
UsecaseA_A1

 / alertHMIR2
 : CS _H MI

 / alertHMIR 1
 : CS _H MI

 / alertS erv iceS erver
 : CS _ S erver_ Managers

 / u serR 1
 : U ser

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleStatechangeAlertL ifecycleState

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

logAlertS tatusChangelogAlertS tatusChange

publ ishLogS tatusChangepubl ishLogS tatusChange

publis hAlertpublis hAlert
publishAlertpublishAlert for all registered

HMIs

Basic path

Alternative path

 / alertS erviceS erver
 : CS _ S er ver _Managers

 / alertS erviceClient
 : CS _ClientApplication

 / alertHMIR 1
 : CS _H MI

 / bMC4IApplication
 : BMC4IApplication

createAlertBTcreateAlertBT
addAlertT imeS tampaddAlertT imeS tamp

for wardAlertfor wardAlert

handleAlerthandleAlert

createAlertObjectcreateAlertObject

logAlertS tatus ChangelogAlertS tatus Change

notifyAlertnotifyAlert

publ is hAlertpubl is hAlert

dis playAlertdis playAlert

createAcous ticAlertcreateAcous ticAlert

S hall we do it?

for all regis tered
HMIs

<<Test case>>
UseCaseB_E1

<<Test case>>
UsecaseB_A1

 / alertHMIR2
 : CS _H MI

 / alertHMIR 1
 : CS _H MI

 / alertS erv iceS erver
 : CS _ S erver_ Managers

 / u serR 1
 : U ser

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

changeAlertL ifecycleStatechangeAlertL ifecycleState

changeAlertL ifecycleS tatechangeAlertL ifecycleS tate

logAlertS tatusChangelogAlertS tatusChange

publ ishLogS tatusChangepubl ishLogS tatusChange

publis hAlertpublis hAlert
publishAlertpublishAlert for all registered

HMIs

Basic path

Extended path

 / alertS erviceS erver
 : CS _ S er ver _Managers

 / alertS erviceClient
 : CS _ClientApplication

 / alertHMIR 1
 : CS _H MI

 / bMC4IApplication
 : BMC4IApplication

createAlertBTcreateAlertBT
addAlertT imeS tampaddAlertT imeS tamp

for wardAlertfor wardAlert

handleAlerthandleAlert

createAlertObjectcreateAlertObject

logAlertS tatus ChangelogAlertS tatus Change

notifyAlertnotifyAlert

publ is hAlertpubl is hAlert

dis playAlertdis playAlert

createAcous ticAlertcreateAcous ticAlert

S hall we do it?

for all regis tered
HMIs

<<verify>>

<<verify>>

<<verify>>

<<verify>>

Locate Fault

Repair Fault

OperatorMaintainer

© HOOD Group 2007 www.HOOD-Group.com

Page 31

Testing use cases

Deriving the test specification: Stage 1 Initial test cases
– Check which non-functional requirements can be tested within

a test case
– Define test cases for the rest of the non-functional

requirements

<<Test case>>
Use case_basic

<<Test case>>
SRN21_testNon-functional

requirements

Basic path

 / alertS erviceS erver
 : CS _ S er ver _Managers

 / alertS erviceClient
 : CS _ClientApplication

 / alertHMIR 1
 : CS _H MI

 / bMC4IApplication
 : BMC4IApplication

createAlertBTcreateAlertBT
addAlertT imeS tampaddAlertT imeS tamp

for wardAlertfor wardAlert

handleAlerthandleAlert

createAlertObjectcreateAlertObject

logAlertS tatus ChangelogAlertS tatus Change

notifyAlertnotifyAlert

publ is hAlertpubl is hAlert

dis playAlertdis playAlert

createAcous ticAlertcreateAcous ticAlert

S hall we do it?

for all regis tered
HMIs

<<verify>>

<<verify>>

<<verify>>

© HOOD Group 2007 www.HOOD-Group.com

Page 32

Testing use cases

Deriving the test specification: Stage 2 Reduced test cases
– Check the use case

state/activity model
to reduce the number
of test cases.

– Start with the basic path.
– Calculate the use case

state/activity model coverage
of the flow
(states&transitions coverage)

Precondition: failure occured

receives the failure messages

System checks the syntax of the failure messages

System transforms the failure messages to internal data objects

System distributes the transformed messages to all affected subscribers

Postcondition: waiting for next failure message

failure message format is correct?

System sends an error message
Transformation error

System alerts operator

[yes]

[no]

[no]

[yes]

[yes]

[no]

[no]

[yes]

1

© HOOD Group 2007 www.HOOD-Group.com

Page 33

Testing use cases

Deriving the test specification: Stage 2 Reduced test cases
– If the path does not enhance

the state/activity coverage
¾ drop it

– Take the next path
until states&transitions coverage

– If important states/activities or
transitions are not covered,
define new path = test case
that visit these states/activities.

Precondition: failure occured

System receives the failure messages

System checks the syntax of the failure messages

System transforms the failure messages to internal data objects

System distributes the transformed messages to all affected subscribers

Postcondition: waiting for next failure message

failure message format is correct?

System sends an error message
Transformation error

System alerts operator

[yes]

[no]

[no]

[yes]

[yes]

[no]

[no]

[yes]

2

3

© HOOD Group 2007 www.HOOD-Group.com

Page 34

From Use Cases to Test Cases

• Thanks for your patience!

Questions

